首页> 外文OA文献 >Aboveground biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental data
【2h】

Aboveground biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental data

机译:结合遥感,森林清单和环境数据,在法属圭亚那进行地上生物量制图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mapping forest aboveground biomass (AGB) has become an important task, particularly for the reporting of carbon stocks and changes. AGB can be mapped using synthetic aperture radar data (SAR) or passive optical data. However, these data are insensitive to high AGB levels (>150 Mg/ha, and >300 Mg/ha for P-band), which are commonly found in tropical forests. Studies have mapped the rough variations in AGB by combining optical and environmental data at regional and global scales. Nevertheless, these maps cannot represent local variations in AGB in tropical forests. In this paper, we hypothesize that the problem of misrepresenting local variations in AGB and AGB estimation with good precision occurs because of both methodological limits (signal saturation or dilution bias) and a lack of adequate calibration data in this range of AGB values. We test this hypothesis by developing a calibrated regression model to predict variations in high AGB values (mean >300 Mg/ha) in French Guiana by a methodological approach for spatial extrapolation with data from the optical geoscience laser altimeter system (GLAS), forest inventories, radar, optics, and environmental variables for spatial inter- and extrapolation. Given their higher point count, GLAS data allow a wider coverage of AGB values. We find that the metrics from GLAS footprints are correlated with field AGB estimations (R2 = 0.54, RMSE = 48.3 Mg/ha) with no bias for high values. First, predictive models, including remote-sensing, environmental variables and spatial correlation functions, allow us to obtain “wall-to-wall” AGB maps over French Guiana with an RMSE for the in situ AGB estimates of ∼50 Mg/ha and R2 = 0.66 at a 1-km grid size. We conclude that a calibrated regression model based on GLAS with dependent environmental data can produce good AGB predictions even for high AGB values if the calibration data fit the AGB range. We also demonstrate that small temporal and spatial mismatches between field data and GLAS footprints are not a problem for regional and global calibrated regression models because field data aim to predict large and deep tendencies in AGB variations from environmental gradients and do not aim to represent high but stochastic and temporally limited variations from forest dynamics. Thus, we advocate including a greater variety of data, even if less precise and shifted, to better represent high AGB values in global models and to improve the fitting of these models for high values. (Résumé d'auteur)
机译:绘制森林地上生物量(AGB)的地图已经成为一项重要任务,尤其是在报告碳储量和变化方面。可以使用合成孔径雷达数据(SAR)或无源光学数据来映射AGB。但是,这些数据对高AGB水平(P波段> 150 Mg / ha,P波段> 300 Mg / ha)不敏感,而AGB水平通常在热带森林中发现。研究通过结合区域和全球范围内的光学和环境数据,绘制了AGB的大致变化图。但是,这些地图无法代表热带森林中AGB的局部变化。在本文中,我们假设由于方法学上的限制(信号饱和度或稀释偏差)以及在此AGB值范围内缺乏足够的校准数据而出现了误报AGB和AGB估算中的局部变化的问题。我们通过开发一种校准的回归模型来测试该假设,以通过光学地球科学激光高度计系统(GLAS)的数据,森林清单数据进行空间外推的方法来预测法属圭亚那高AGB值(平均> 300 Mg / ha)的变化,雷达,光学和环境变量进行空间内插和外推。鉴于其较高的点数,GLAS数据可以更广泛地覆盖AGB值。我们发现,来自GLAS足迹的指标与田间AGB估计值相关(R2 = 0.54,RMSE = 48.3 Mg / ha),没有偏高值。首先,包括遥感,环境变量和空间相关函数在内的预测模型使我们能够利用RMSE获得法属圭亚那“墙到墙”的AGB地图,从而对AGB估计值约为50 Mg / ha和R2在1 km的网格大小下= 0.66。我们得出的结论是,即使校准数据符合AGB范围,基于GLAS和相关环境数据的校准回归模型也可以产生良好的AGB预测,即使对于较高的AGB值也是如此。我们还证明了,野外数据与GLAS足迹之间较小的时间和空间失配对于区域和全球校准的回归模型而言不是问题,因为野外数据旨在根据环境梯度来预测AGB变化的大趋势和深趋势,而不是代表高但不高的趋势。森林动态的随机和时间有限的变化。因此,我们主张包括更多种类的数据,即使精度和偏移不那么精确,也可以更好地在全局模型中表示较高的AGB值,并改善这些模型对高值的拟合。 (Résuméd'auteur)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号